CT for substrate identification in ischemic cardiomyopathy

Konkuk University Medical Center

Department of Radiology

Sung Min Ko

Ischemic Cardiomyopathy

Assessment of LV function

70M, PSVT

Ischemic Cardiomyopathy

Assessment of LV myocardial scar

Anatomic, dynamic, and perfusion characteristics of abnormal myocardium to guide VT ablation

Voltage map

Tian J, et al. Cir Arrhythm Electrophysiol 2010;3:496-504

3D Scar Imaging Using a DE-CT to Guide VT Catheter Ablation

J Cardiovasc Electrophysiol 2013;24:708-710

69/M with ischemic cardiomyopathy

Regional myocardial wall thinning correlates to arrhythmogenic substrates in post MI VT

Komatsu Y et al. Circ Arrhythm Electrophysiol. 2013; 6:342-50.

The regional wall thinning area vs low-voltage area

Distribution and characteristics of local abnormal ventricular activities

- WT area is substantially smaller than the low-voltage area.
- 87% of LAVA are located within the WT <5 mm.
- The integration of cardiac CT WT with 3D EAVMs can help focus mapping and ablation on the culprit regions.

DE-Cardiac CT in the characterization of VT structural substrate

CT vs. EAM Scar in a Patient with ICM

J Am Coll Cardiol Img 2016;9:822–32

TABLE 3 Diagnostic Performance of CT in the Detection of Myocardial Substrate of VT, as Identified at EAM

		Sensitivity	Specificity	PPV	NPV
All Patients	DE	75 (84)	88 (88)	57 (80)	95 (93)
	WTN	47 (41)	92 (91)	56 (62)	87 (77)
	DE + WTN	76 (82)	86 (82)	56 (72)	95 (92)
ICM	DE	78 (90)	86 (88)	61 (86)	95 (95)
	WTN	55 (51)	89 (89)	63 (73)	87 (79)
	DE + WTN	79 (89)	85 (85)	63 (80)	95 (96)
NICM	DE	78 (77)	91 (88)	54 (73)	95 (91)
	WTN	29 (32)	95 (93)	55 (69)	87 (75)
	DE + WTN	77 (74)	87 (79)	47 (62)	95 (89)

Values are % (%). Values in parentheses represent diagnostic performance of CT calculated excluding segments with a low prevalence of scars (<20%). Sensitivity, specificity, PPV, and NPV of each CT parameter considering the entire population, ICM, and NICM patients.

DE = delayed enhancement; ICM = ischemic cardiomyopathy; NICM = nonischemic cardiomyopathy; NPV = negative predictive value; PPV = positive predictive value; VT = ventricular tachycardia; WTN = wall thinning; other abbreviations as in Tables 1 and 2.

- Good overall concordance ($\kappa = 0.536$) between CT and EAM in the detection of scar
- Delayed enhancement and wall thinning sensitivity 76%, specificity 86% and NPV 95% for identifying segments characterized by low voltages
- Delayed enhancement CT provides a 3D characterization of VT scar substrate together with a detailed anatomic model of the heart.

Correlation between CT-derived scar topography and critical ablation sites in post MI VT

15 patients (mean age 63 ± 10 years, 86% male, LVEF 27 ± 12%) with a prior MI referred for VT ablation.

J Cardiovasc Electrophysiol. 2018;29:438–445.

- Bipolar and unipolar voltage amplitude and bipolar electrogram width correlated with WT (correlation coefficient: 0.63, 0.65, and 0.41, respectively, P < 0.001).
- The ablation target sites were located on CT-defined ridges (WT: 4.2 ± 1.2 mm) bordered by areas of thinning (WT: 2.6 ± 1.1 mm, P < 0.0001) in 14 of 15 patients.
- Ablation targets were found on ridges in 49 of 58 VTs (84%) for which target sites were identified.
- VT became noninducible postablation in 11 of 15 patients (73%).

Siemens's SOMATOM Force

Overview	Features & Ben	efits Clin	ical Use	Technical Specifications			
Detector		2 x Stella	2 x Stellar ^{infinity} detector with 3D Anti-Scatter collimator				
Number of acquired slices		384 (2 x	384 (2 x 192)				
Rotation time		up to 0.2	up to 0.25 s1				
Temporal resolution		66 ms	66 ms				
Generator power		240 kW (240 kW (2 x 120 kW)				
kV settings		70-150 k	70-150 kV, in steps of 10				
Spatial resolution		0.24 mm	0.24 mm				
Max. scan speed		737 mm/	737 mm/s ¹ with Turbo Flash				
Table load		up to 307	up to 307 kg / 676 lbs1				
Gantry opening		78 cm	78 cm				

Collimation: 2 x 192 x 0.6 mm	Tube setting: 80 kV, 543 mAs
Spatial resolution: 0.24 mm	CTDIvol: 2.49 mGy
Scan time: 0.2 s	DLP: 45 mGy cm
Scan length: 139 mm	Eff. dose: 0.6 mSv
Rotation time: 0.25 s	

Cardiac CT for VT in patient with ICM

Spin: -28 Tilt: 28

- Coronary evaluation
- Scar detection
 - Wall thinning: (WT < 5 mm)
 - Subendocardial adipose metaplasia
 - Hypoperfusion
 - Delayed enhancement

Coronary stenoses

Wall thinning and adipose metaplasia

Wall thinning and motion abnormality

DE-CT viability imaging after MI

preinfarct 5 minutes after contrast

postinfarct during injection

postinfarct first-pass contrast 5 minutes after contrast injection

Myocardial viability with CMR and CT

63/M, AMI

Myocardial viability with CMR and CT

73/M, OMI

Follow-up of acute myocardial infarction

16 months later

Post MI aneurysm and pseudoaneurysm

Perfusion: CT vs. CMR

40M, chest discomfort No medication for DM & hyperlipidemia

CTP CMR DE-CMR

Summary

- The role of cardiac CT as a diagnostic tool in patients presenting with VT is relatively limited.
- Compared with CMR (near-isotropic spatial resolution of 1 to 2 mm³), a major advantage of cardiac CT (close to 0.5 mm³ on most systems) is a significantly higher spatial resolution.
- Cardiac CT lends itself to noninvasive assessment of the coronary arteries, particularly in patients with low to intermediate probability of coronary artery disease.
- Cardiac CT may also be considered as an alternative modality for detailed assessment of myocardial structure and function if CMR and TTE imaging is unavailable or suboptimal.

Circulation 2017;136:2491–2507

Summary

- Cardiac CT can also be used for detailed characterization of scar (wall thinning, fatty metaplasia, decreased perfusion, and delayed hyperenhancement).
- Good agreement between scar defined by cardiac CT and that defined by EAM systems in patients with ICM.
- However, cardiac CT is associated with a lower contrastto-noise ratio within myocardial tissue, which contributes to inferior scar characterization relative to LGE-CMR.
- Cardiac CT-based scar imaging, and indeed structural imaging, are currently largely limited to an adjunctive role during VT ablation procedures.

